Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer:
We know there's two forces acting on a book while it sits on a table:the force of gravity pulling it down, and the normal force of the table acting upward on the book. The book isn't accelerating while it sits there. That's because the weight of the book is being counteracted by the normal force of the table.
Explanation:
There are two forces acting upon the book. One force - the Earth's gravitational pull - exerts a downward force. The other force - the push of the table on the book (sometimes referred to as a normal force) - pushes upward on the book.
Acceleration = ▵v/▵t
Time = d/v
Fisrt calculate time : ( 118/29 ) = 4 seconds
Then calculate acceleration
A = 29/4 = 7.25 m/s²
Now the force.
Force = mass * acceleration.
F= 1,019 * 7.25
F= 7,387 N
Answer:
the speed of light in air is about 299,000,000 and 3×10⁸ m/s