Answer: A) Forces of attraction and repulsion exist between gas particles at close range.
Explanation:
The <u>Ideal Gas equation</u> is:
Where:
is the pressure of the gas
is the volume of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them. In this sense, real gases can behave approximately to an ideal gas, under conditions of high temperature and low pressures.
However, at low temperatures or high pressures, real gases deviate significantly from ideal gas behavior. This is because at low temperatures molecules begin to move slower, allowing the repulsive and attractive forces among them to take effect. In fact, <u>the attraction forces are responsible for the condensation of the gas</u>. In addition, at high pressures the volume of molecules cannot be approximated to zero, hence the volume of these molecules is not negligible anymore.
Answer:
Kinectic friction is the answer to the lower part of the question
Increase in temperature of water = 0.53 °C
Explanation:
Change in mechanical energy = Potential energy
Potential energy = mgh
Mass, m = Mass of 1 L water = 1 kg
Acceleration due to gravity, g = 9.81 m/s²
Height, h = 225 m
Potential energy = 1 x 9.81 x 225 = 2207.25 J
Because of this 2207.25 J water gets heated.
Heat energy, E = mcΔT
Mass, m = Mass of 1 L water = 1 kg
Specific heat of water, c = 4200 J/kg/C
Energy, E = 2207.25 J
Change in temperature, ΔT = ?
Substituting
2207.25 = 1 x 4200 x ΔT
ΔT = 0.53 °C
Increase in temperature of water = 0.53 °C
Answer:
The second law of a vibrating string states that for a transverse vibration in a stretched string, the frequency is directly proportional to the square root of the string's tension, when the vibrating string's mass per unit length and the vibrating length are kept constant
The law can be expressed mathematically as follows;

The second law of the vibrating string can be verified directly, however, the third law of the vibrating string states that frequency is inversely proportional to the square root of the mass per unit length cannot be directly verified due to the lack of continuous variation in both the frequency, 'f', and the mass, 'm', simultaneously
Therefore, the law is verified indirectly, by rearranging the above equation as follows;

From which it can be shown that the following relation holds with the limits of error in the experiment
m₁·l₁² = m₂·l₂² = m₃·l₃² = m₄·l₄² = m₅·l₅²
Explanation:
Answer:
position 2
Explanation:
the gravity from the ball to the floor had the most movement involved.