Answer:
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Explanation:

initially
0.85 M 0 0
(0.85-x)M x x
The equilibrium constant of reaction = 
The expression of an equilibrium cannot can be written as:
![K_c=\frac{[H^+][CN^-]}{[HCN]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCN%5E-%5D%7D%7B%5BHCN%5D%7D)

Solving for x:
x = 0.0000229
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Extensive properties, such as mass and volume, depend on the amount of matter being measured.Intensive properties, such as density and color, do not depend on the amount of the substance present.Physical properties<span> can be measured without changing a substance's chemical identity.</span>
Answer:
The pressure increases to 3.5 atm.
Solution:
According to Gay-Lussac's Law, " At constant volume and mass the pressure of gas is directly proportional to the applied temperature".
For initial and final states of a gas the equation is,
P₁ / T₁ = P₂ / T₂
Solving for P₂,
P₂ = P₁ T₂ / T₁ ----- (1)
Data Given;
P₁ = 3 atm
T₁ = 27 °C + 273 = 300 K
T₂ = 77 °C + 273 = 350 K
Putting values in eq. 1,
P₂ = (3 atm × 350 K) ÷ 300 K
P₂ = 3.5 atm
1:2:6? Ba(NO3)2 +Na2SO4 -----> BaSO4 + 2NaNO3
Ba(NO3)2
BaSO4
NaNO 3
Na2SO4