Answer:
Explanation:
the object will not move as the force exerted is not sufficient enough to overcome its force of friction
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
Answer:
If a coil of wire is placed in a changing magnetic field, a current will be induced in the wire. This current flows because something is producing an electric field that forces the charges around the wire. (It cannot be the magnetic force since the charges are not initially moving). ... that determines the induced current.
We calculate the coordinates at t₁ = 9 min and t₂ = 10 min, since the 10th minute is between t₁ and t₂.
As it leaves from rest, it means that the initial speed is zero
t₁=9 min=540 s
t₂=10 min=600 s
x₁=at₁²/2=8*540²/2=4*291600=1166400 m
x₂=at₂²/2=8*600²/2=4*360000=1440000 m
Δx=x₂-x₁=1440000-1166400=273600 m represents the distance traveled by the car in the 10th minute of travel