Answer:
GRAVITATIONAL FORCE
Explanation:
We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.
A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released
Answer:
A u = 0.36c B u = 0.961c
Explanation:
In special relativity the transformation of velocities is carried out using the Lorentz equations, if the movement in the x direction remains
u ’= (u-v) / (1- uv / c²)
Where u’ is the speed with respect to the mobile system, in this case the initial nucleus of uranium, u the speed with respect to the fixed system (the observer in the laboratory) and v the speed of the mobile system with respect to the laboratory
The data give is u ’= 0.43c and the initial core velocity v = 0.94c
Let's clear the speed with respect to the observer (u)
u’ (1- u v / c²) = u -v
u + u ’uv / c² = v - u’
u (1 + u ’v / c²) = v - u’
u = (v-u ’) / (1+ u’ v / c²)
Let's calculate
u = (0.94 c - 0.43c) / (1+ 0.43c 0.94 c / c²)
u = 0.51c / (1 + 0.4042)
u = 0.36c
We repeat the calculation for the other piece
In this case u ’= - 0.35c
We calculate
u = (0.94c + 0.35c) / (1 - 0.35c 0.94c / c²)
u = 1.29c / (1- 0.329)
u = 0.961c
Answer:
Explanation:
Tides occur in the ocean but nit in lakes because an ocean is a free flowing body of water that can travel a large area of the globe while a lake or pond only covers a small area of the earth so it is not affected by gravity as violently and in turn, prevents the formation of tides.
Answer:
the angle is given by
Tan theta = 35/59 = 0.59
so theta = Tan ^-1 ( 0.59 )
theta = 30.54 deg.