To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
Answer:
0.003034 s
1.035 m
4.5 m
Explanation:
= frequency of the tone = 329.6 Hz
= Time period of the sound wave
we know that, Time period and frequency are related as

= speed of the sound in the air = 341 ms⁻¹
wavelength of the sound is given as

= speed of the sound in the water = 1480 ms⁻¹
wavelength of the sound in water is given as
