To determine the strength of potassium permanganate with a standard solution of oxalic acid.
Air is it gas so it fills its container, the balloon, completely.
Answer:
ionic or covalent
Explanation:
The outermost electrons -- the valence electrons -- are able to interact with other atoms, and, depending on how those electrons interact with other the atoms, either an ionic or covalent bond is formed, and the atoms fuse together to form a molecule.
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = ![10^{-4.8}](https://tex.z-dn.net/?f=10%5E%7B-4.8%7D)
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = ![10^{-7.6}](https://tex.z-dn.net/?f=10%5E%7B-7.6%7D)
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = ![10^{-1.9}](https://tex.z-dn.net/?f=10%5E%7B-1.9%7D)
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = ![10^{1.8}](https://tex.z-dn.net/?f=10%5E%7B1.8%7D)
[In-]/[HIn] = 63.10