Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Answer:
Probably stop taking the prescribed durg and contact your pharmacist and your doctor that gave you your prescription asap.
Explanation:
Both of those health professionals will assist the patient in understanding how to go about the next steps for side effect relief.
Autoionization Reactions are those reactions in which ions or molecules ionizes spontaneously without adding any external reagent.
For Example,
Autoionization of water.
H₂O + H₂O ⇆ H₃O⁺ + OH⁻
Autoionization reaction of Methanol is shown below,
Answer:
47.2 g
Explanation:
Let's consider the following double displacement reaction.
3 FeCl₂ + 2 Na₃PO₄ → Fe₃(PO₄)₂ + 6 NaCl
The molar mass of Fe₃(PO₄)₂ is 357.48 g/mol. The moles corresponding to 44.3 g are:
44.3 g × (1 mol / 357.48 g) = 0.124 mol
The molar ratio of Fe₃(PO₄)₂ to FeCl₂ is 1:3. The moles of FeCl₂ are:
3 × 0.124 mol = 0.372 mol
The molar mass of FeCl₂ is 126.75 g/mol. The mass of FeCl₂ is:
0.372 mol × (126.75 g/mol) = 47.2 g