Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Because force always has a direction, it always works towards or against something.
you might know that force,
is rate of change of momentum i.e
force = m (v-u)/t
= (mv - mu )/ t
as we know momentum is a vector quantity so, the rate of change of momentum i.e Force would also be a vector quantity.
momentum = mass × velocity
velocity has a direction so,
momentum has also got a direction.
so, momentum is also a vector quantity.
Answer:
Flip the cell.
Explanation:
This reverses direction of energy transfer.
Alternatively, flip ammeters and voltmeters to give negative readings.
what do penguins eat for lunch?
Ice-burgers!
cause a change in the object's velocity
It would be B, the weather patterns outside.