F - False.
Its greatest kinetic energy is at the point of release.
It has the least kinetic energy, zero, at its highest point in its path.
Answer:
The normal strain along an axis oriented 45° from the positive x axis in the clockwise direction is -ε₀/2
Explanation:
Given that

From equation of normal strain in x direction:

Substituting the values:

Answer:
Fetal Hb binds oxygen more tightly than adult Hb (not option a)
Answer:
I = 2172.46 A
Explanation:
Given that,
The length of a solenoid, l = 2.1 m
The inner radius of the solenoid, r = 28 cm = 0.28 m
The number of turns in the wire, N = 1000
The magnetic field in the solenoid, B = 1.3 T
We need to find the current carried by it. We know that, the magnetic field in a solenoid is given by :

Put all the values,

So, it carry current of 2172.46 A.
The answer to this question is 3.69