Electrostatic potential energy of a system of charge is given by

here we have
= two charges of different magnitudes
r = distance between charges
so here we can see that electrostatic potential energy will depends upon the product of two charges and inversely depends upon the distance between the two charges
So here we can say that the electrostatic potential energy of two charges will be same and equal to each other
Answer:
The number of particles in state E0 over the number of particles in state E1 will reduce
Explanation:
E0 represents the ground level state when all the particles have same energy level.
E1 represents excited state in which only a few particle reaches
E0 and E1 get further apart means that the energy difference between the two level increases.
Thus, the number of particles in state E0 over the number of particles in state E1 will reduce.
Answer:
Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force. Applying a force requires us to do work. After work has been done, energy has been transferred to the object, and the object will be moving with a new constant speed.
Answer:
r = 0.5 m
Explanation:
First we find the angular speed of the ball by using its period:
ω = θ/t
For the time period:
ω = angular speed = ?
θ = angular displacement = 2π rad
t = time period = 0.5 s
Therefore,
ω = 2π rad/0.5 s
ω = 12.56 rad/s
Now, for the radius:
v = rω
r = v/ω
where,
v = linear speed = 6.29 m/s
r = radius = ?
r = (6.29 m/s)/(12.56 rad/s)
<u>r = 0.5 m</u>
Explanation:
It is given that,
Total mass is 70 kg
The truck exerts a constant force of 20 N.
Then the net force is given by :
F = ma
a is acceleration of rider

Initial velocity of rider is 0. So, using equation of kinematics to find the final velocity as :

Since, 1 m/s = 2.23 mph
4.28 m/s = 9.57 mph
So, the speed of the rider is 4.28 m/s or 9.57 mph.