Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.
So since the boat has a lower density than the water, it will float.
So the answer is choice B
That type of bending is called "diffraction" of waves.
Answer:
Explanation 118 = (1/2) * 0.15 * v² 118 = 0.075 * v² v² = 1573.33 m/s ... since KE = m/2*V^2 , then : V = √2KE/m = √20*118/1.5 = 39.67 m//sec ( 142.8 km/h ; 88.75 mph).: