The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Given the data in the question;
Since the brick was initially at rest before it was dropped,
- Initial Velocity;

- Height from which it has dropped;

- Gravitational field strength;

Final speed of brick as it hits the ground; 
<h3>Velocity</h3>
velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.
To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Learn more about equations of motion: brainly.com/question/18486505
When I bump the table, the coffee in my cup spilled out. Newton's 1st law explains this reaction.
Answer: A) or the first option.
Answer:
It's B, anything about a circle is Stationary
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s
'The normal is a line perpendicular to the surface of the mirror'.This is the correct statement that corrects an error on the site.
<h3>What is the law of reflection?</h3>
The law of reflection specifies that upon reflection from a downy surface, the slope of the reflected ray is similar to the slope of the incident ray.
The reflected ray is consistently in the plane determined by the incident ray and perpendicular to the surface at the point of reference of the incident ray.
When the light rays descend on the smooth surface, the angle of reflection is similar to the angle of incidence, also the incident ray, the reflected ray, and the normal to the surface all lie in a similar plane.
Hence 'The normal is a line perpendicular to the surface of the mirror'.This is the correct statement that corrects an error on the site
To learn more about the law of reflection refer to the link;
brainly.com/question/12029226