Answer is: electron in 2pz orbital.
The principal quantum number is one
of four quantum numbers which are assigned to each electron in
an atom to describe that electron's state, n=1,2,3... n=2 - <span>the </span>second energy level.<span>
The azimuthal quantum number is a quantum number for
an atomic orbital that determines its orbital angular
momentum and describes the shape of the orbital. l = 0,1...n-1, when l = 1, that is p </span>subshell.
The magnetic quantum number<span>, </span><span>ml, show</span> orbital<span> in which the electron is located, ml = -l...+l, ml = 0 is pz orbital.</span>
The spin quantum number<span>, </span><span>ms</span><span>, is the spin of the electron; ms = +1/2 or -1/2.</span>
The answer to the question is b
increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
Explanation:
The concentration of NO at equilibrium will increase when the reaction takes place at a higher temperature because increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
The reaction is an endothermic reaction.
N₂ + O₂ + heat ⇄ 2NO
According to Le Chatelier's principle, "if any of the conditions of a system in equilibrium is changed the system will adjust itself in order to annul the effect of the change".
- In an endothermic reaction, heat is usually absorbed.
- We see that in the backward reaction, heat is absorbed.
- If the temperature of this reaction is increased, the backward reaction is favored more.
- Since the reactants are combining better, more products NO results.
learn more:
Thermodynamics of reactions brainly.com/question/10567109
#learnwithBrainly