Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K
Answer:
The answer should be I and III
Answer:
Carbonation. When you think of carbonation, think carbon
Oxidation. Oxygen causes oxidation.
Hydration. This isn't the hydration used in your body, but it's similar.
Explanation:
Land breeze sea breeze,ventilation,etc
Answer:
T =76.13 K
Explanation:
Given data:
Temperature of gas = ?
Volume of gas = 250 mL(250/1000 = 0.25 L)
Mass of helium = 0.40 g
Pressure of gas = 253.25 kpa (253.25/101 = 2.5 atm)
Solution:
Formula:
PV = nRT
First of all we will determine the number of moles of helium.
Number of moles = mass/ molar mass
Number of moles = 0.40 g/ 4 g/mol
Number of moles = 0.1 mol
Now we will put the values.
R = general gas constant = 0.0821 atm.L/ mol.K
T = PV/nR
T =2.5 atm× 0.25 L /0.1 mol ×0.0821 atm.L/ mol.K
T = 0.625 /0.00821/K
T =76.13 K