Answer: final temperatures will be
a) water 21 C
b) concrete 20.005 C
c) steel 20.008 C
d) mercury 53 C
Explanation:
Change in temp dT = dH / (mass x specific heat)
Specific heat of these materials can be found from many sources:
water = 1 kcal / kg C
concrete = 210 kcal / kg C
steel = 114 kcal / kg C
mercury = 0.03 kcal /kg C
So dT (water) from 1 kcal heat into 1 kg water = 1 kcal / (1 kg x 1 kcal/kg C) = 1 C therefore the final temperature is 20 + 1 = 21 C
But dT (steel) = 1 kcal / (1kg x 114 kcal/kg C) = 0.008 C so the final temperature is 20 + 0.008 = 20.008 C
The results for concrete and mercury are calculated in the same way
Answer:
I am not a man or boy, I am a girl so therefore I could answer this question before November ends Imao, have a great rest of your day.
Explanation:
Answer:
The chemist can either:
a. Use a small fractionation apparatus.
b. Add a compound with a much higher boiling point.
Explanation:
Using a smaller fractionation apparatus or Vigreux column will help to minimize loss of the distillate.
If a compound with a higher boiling point is added, the vapors of this liquid will displace the vapors of this small amount of compound with a lower boiling point. This compound with a higher boiling point is known as a Chaser.
Answer: It is a molecular compound. (2) It contains a metal. (3) It can conduct electricity as a solid.
Answer:
3.824 atm
Explanation:
From the ideal gas equation
P = mRT/MW × V
m is mass of testosterone = 12.9 g
R is gas constant = 82.057 cm^3.atm/mol.K
T is temperature of benzene solution = 298 K
MW is molecular weight of testosterone = 288.40 g/mol
V is volume of benzene solution = 286 ml = 286 cm^3
P = 12.9×82.057×298/288.4×286 = 3.824 atm