B) The amount of work done
Answer:
Centripetal acceleration
Explanation:
- The centripetal acceleration is the motion inwards towards the center of a circular path.
- <em><u>Centripetal acceleration is given by; the square of the velocity, divided by the radius of the circular path.
</u></em>
ac = v²/r
Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m
Explanation:
speed of wave
v = wavelength x frequency
since frequency is f = 1/Period then
v = wavelength : Period
v = 10 cm/ 0.2 s = 50 cm/s
v = 0.5 m/s
According to the continuity equation, the rate at which mass enters the system equals the rate at which mass exits in any steady state process.
An equation that explains the movement of a particular quantity is a continuity equation, also known as a transport equation. Although it can be applied generally to any significant quantity, it is extremely simple and useful when used with preserved quantities.
The radius is seven centimeters, and the mass flow rate is 0 to 5 kg/s. Find the mass flow rate at a point with a 3.5 cm radius. We can consequently deduce that based on the equation. As we all know, the mass flow rate is constant.
If the rate of mass entering and leaving the system is equal, the rate of mass leaving the system should be processed.
The mass flow rate air section A and the mass flow rated section B are equivalent, according to the continuity equation. Mass flow rate in section B is therefore 0.02, or five kilograms per second.
To know more about continuity equation, click on the link below:
brainly.com/question/19566865
#SPJ4
Answer:
W = 289.70 kg
Explanation:
Given data:
Pressure in tank = 23 atm
Altitude 1000 ft
Air temperature in tank T = 700 F
Volume of tank = 800 ft^3 = 22.654 m^3
from ideal gas equation we have
PV =n RT
Therefore number of mole inside the tank is




we know that 1 mole of air weight is 28.97 g
therefore, tank air weight is 
W = 289.70 kg