Answer:
The plastic wrap of the covered cup acts like the atmosphere, and traps the water vapor. In a real cloud, the water vapor cools back into liquid water. In the covered cup, the air can only hold so much vapor, and the vapor condenses back to liquid water forming a “rain cloud” on the plastic wrap.
Explanation:
Answer:
238,485 Joules
Explanation:
The amount of energy required is a summation of heat of fusion, capacity and vaporization.
Q = mLf + mC∆T + mLv = m(Lf + C∆T + Lv)
m (mass of water) = 75 g
Lf (specific latent heat of fusion of water) = 336 J/g
C (specific heat capacity of water) = 4.2 J/g°C
∆T = T2 - T1 = 119 - (-20) = 119+20 = 139°C
Lv (specific latent heat of vaporization of water) = 2,260 J/g
Q = 75(336 + 4.2×139 + 2260) = 75(336 + 583.8 + 2260) = 75(3179.8) = 238,485 J
Answer:
Kp = 1.41 x 10⁻⁶
Explanation:
We have the chemical equation:
2 A(g) + 3 B(g)⇌ C(g)
In which A and B are the reactants and C is the product. We calculate first the change in the number of moles of gas (Δn or dn):
dn= (sum moles products - sum moles reactants)
= (moles C - (moles A + moles B))
= (1 - (2+3))
= 1 - 5
= -4
We have also the following data:
Kc = 63.2
T= 81∘C + 273 = 354 K
R = 0.082 L.atm/K.mol (it is a constant)
Thus, we introduce the data in the mathematical expression for the relation between Kp and Kc:
= (0.082 L.atm/K.mol x 354 K)⁻⁴ = 1.41 x 10⁻⁶
Answer:
This means that a solution must be cooled to a lower temperature than the pure solvent in order for freezing to occur.
Explanation: