The statement which is true about the reactivity of element with 1S²2S²2P⁶3S¹ is
it is reactive because it has to lose one electron to have a full outermost energy level.
<u><em>Explanation</em></u>
- <u><em> </em></u>Element with 1S²2S²2P⁶3S¹ electron configuration is a sodium metal.
- sodium has one electron in the outermost energy level.
- for sodium to have a full outermost energy level ( 8 electrons) it loses the 1 electron in 3S¹ to form a positively charged ion. (Na⁺)
Answer:
The graph of this equation is shown in Figure 1. As you can see this is a straight line with negative slope and does not intersect the y-axis. So the ...
Explanation:
Answer:
See attachment.
Explanation:
In the first step, a cyclic structure with a positive bromine is formed. The bromine shares the positive charge with the two carbons that it is bonded to, so the carbons are partially positive.
The second bromine atom then attacks the carbon center, coming in from below the first bromine atom ("backside attack") where the antibonding orbital of the second bromine atom is.
The stereochemistry of the mechanism causes the final product to be an anti-dibromocyclohexane.
I think the sun would suck in the moon
3. 4 g of a nonelectrolyte dissolved in 78. 3 g of water produces a solution. The molar mass of the solute will be 17.94.
<h3>
What is molar mass?</h3>
Molar mass of a substance is its mass in grams in per mole of a solution.
Freezing point: Freezing point of a substance is a temperature at which a liquid starts to solidify.
Depression in the freezing point can be calculated
[Depression in freezing point of pure solvent—Freezing point of solution] =[(0) - (-4.5)] °C =4.5 °C
molar mass = Number of moles of solute m / Mass of solvent in Kg
3.4g / M x 1/ 0.0783 kg = 43.42
Substitute AT by 4.5°C , Kr by 1.86 °C/m, and m by 43.42 m in equation (1) as follows:
1.86 x 43.42 / 4.5 = 17.94
Therefore, molar mass of solute to be 17.94.
To learn more about molar mass, refer to the link:
brainly.com/question/22997914
#SPJ4