Answer:
4.8 g H₂O
Explanation:
To find the mass of water, you need to (1) convert grams B₂H₆ to moles B₂H₆ (via molar mass from periodic table), then (2) convert moles B₂H₆ to moles H₂O (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles H₂O to grams H₂O (via molar mass from periodic table).
It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs because the given value (3.7 grams) has 2 sig figs.
Molar Mass (B₂H₆): 2(10.811 g/mol) + 6(1.008 g/mol)
Molar Mass (B₂H₆): 27.67 g/mol
1 B₂H₆ + 3 O₂ ---> 2 HBO₂ + 2 H₂O
^ ^
Molar Mass (H₂O): 15.998 g/mol + 2(1.008 g/mol)
Molar Mass (H₂O): 18.014 g/mol
3.7 g B₂H₆ 1 mole 2 moles H₂O 18.014 g
---------------- x --------------- x ----------------------- x ----------------- = 4.8 g H₂O
27.67 g 1 mole B₂H₆ 1 mole
Answer:
C2H6
Explanation:
Let us first consider the molar Masses of each gas
HBr - 80.91 g/mol
NO2 - 46.0055 g/mol
C2H6 - 30.07 g/mol
We must remember that the greater the molar mass of a gas the lesser its velocity and average kinetic energy.
Looking at the gases listed, C2H6 have the highest average kinetic energy at this temperature since it has the lowest molecular mass. This reasoning is directly derived from Graham's law of diffusion in gases.
Hence C2H6 will effuse fastest when a hole is made in the container. It also possess the greatest average kinetic energy because it has the lowest molecular mass.
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Answer:
A. The partial pressure for CH4 = 0.0925atm
B. The partial pressure for C2H6 = 0.925atm
C. The partial pressure for C3H8 = 0.346atm
D. The partial pressure for C4H10 = 0.115atm
Explanation:
Total pressure = 1.48atm
Total mole = 0.4+4+1.5+0.5=6.4
A. Mole fraction of CH4 = 0.4/6.4 = 0.0625
The partial pressure for CH4 = 0.0625 x 1.48 = 0.0925atm
B. Mole fraction of C2H6 = 4/6.4 = 0.625
The partial pressure for C2H6 = 0.625 x 1.48 = 0.925atm
C. Mole fraction of C3H8 = 1.5/6.4 = 0.234
The partial pressure for C3H8 = 0.234 x 1.48 = 0.346atm
D. Mole fraction of C4H10 = 0.5/6.4 = 0.078
The partial pressure for C4H10 = 0.078 x 1.48 = 0.115atm
Answer:
contain hereditary information
break down food into energy
Explanation:
Hereditary information is contained in genes and genes are found inside the cell. This implies that the cell contains hereditary information of organisms. This hereditary information is passed on during cell division from parent to daughter cells.
Metabolism occurs in the cells. The cells use oxygen to break down food materials to produce energy.