Answer:
Decrease
Explanation:
Working at a constant temperature when more pressure is exerted, the volume decreases.
This is known as Boyle's law.
According to Boyle's law;
"the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
P and V are pressure and volume
1 and 2 are initial and final states.
The electric field strength will be 0.6252 V/m. It is the strength at which the field is created by charges.
<h3>What is electric file strength?</h3>
The electric field strength is defined as the ratio of electric force and charge.
The electric field strength is found as;

Hence, the electric field strength will be 0.6252 V/m.
To learn more about the electric field strength, refer to the link;
brainly.com/question/4264413
#SPJ4
The ball may attracted to the magnet.
<h3>How can we understand that the hanging ball will be attracted to the magnet or not?</h3>
- From the question, we understand that the ball is attracted by the north pole of the bar magnet, then the bar magnet flipped over and the south pole is brought near the hanging ball.
- As we know, in this type of experiments of bar magnet most of the times the ball is made out of steel.
- Steel is a magnetic material.
- Magnetic materials gets attracted to the magnet at both the North and South pole.
- This can be compared to how neutral objects also gets attracted to the positively and negatively charged rods through the Polarization force.
So, If the bar magnet is flipped over and the south pole is brought near the hanging ball, The ball will be attracted to the magnet.
Learn more about the bar magnet:
brainly.com/question/27943723
#SPJ4
<u>Statement</u><u>:</u>
A force is required to accelerate a 600 g ball from rest to 14 m/s in 0.1 s.
<u>To </u><u>find </u><u>out</u><u>:</u>
The force required to accelerate the ball.
<u>Solution</u><u>:</u>
- Mass of the ball (m) = 600 g = 0.6 Kg
- Initial velocity (u) = 0 m/s [it was at rest]
- Final velocity (v) = 14 m/s
- Time (t) = 0.1 s
- Let the acceleration be a.
- We know the equation of motion,
- v = u + at
- Therefore, putting the values in the above formula, we get
- 14 m/s = 0 m/s + a × 0.1 s
- or, 14 m/s ÷ 0.1 s = a
- or, a = 140 m/s²
- Let the force be F.
- We know, the formula : F = ma
- Putting the values in the above formula, we get
- F = 0.6 Kg × 140 m/s²
- or, F = 84 N
<u>Answer</u><u>:</u>
The force required to accelerate the ball is 84 N and this force acts along the direction of motion.
Hope you could understand.
If you have any query, feel free to ask.
Incorrect didn't flow away from pole cause warmer climate I know cause I tried.
Im'ma guess cause didn't correct the answer but says Flowing away from pole was wrong though.
My guess is crashing with warm water. Might be wrong too though...