2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!
Answer:
Kf = 1.11x10¹³
Explanation:
The value of Kf for a multistep process that involves an equilibrium at each step, is the multiplication of the constant of the equilibrium of each step.
Kf = K1xK2xK3xK4
Kf = 1.90x10⁴ x 3.90x10³ x 1.00x10³ x 1.50x10²
Kf = 1.11x10¹³
Answer:
1. d. The reaction is spontaneous in the reverse direction at all temperatures.
2. c. The reaction is spontaneous at low temperatures.
Explanation:
The spontaneity of a reaction is associated with the Gibbs free energy (ΔG). When ΔG < 0, the reaction is spontaneous. When ΔG > 0, the reaction is non-spontaneous. ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T. ΔS [1]
where,
T is the absolute temperature (T is always positive)
<em>1. What can be said about an Endothermic reaction with a negative entropy change?</em>
If the reaction is endothermic, ΔH > 0. Let's consider ΔS < 0. According to eq. [1], ΔG is always positive. The reaction is not spontaneous in the forward direction at any temperature. This means that the reaction is spontaneous in the reverse direction at all temperatures.
<em>2. What can be said about an Exothermic reaction with a negative entropy change?</em>
If the reaction is exothermic, ΔH < 0. Let's consider ΔS < 0. According to eq. [1], ΔG will be negative when |ΔH| > |T.ΔS|, that is, at low temperatures.
1. U₂₃₈→α→Th₂₃₄(UX₁)
<span>2. Th₂₂₈→α→Ra₂₂₆(MsTh₁) </span>
<span>α = Alpha decay (release of He Nucleus) </span>
<span>The decay products are meso states that undergo further (β) decay</span>
Answer:
synthesis
Explanation:
I believe answer is d a synthesis reaction