Answer:
When we say "chlorine wants to gain one electron", we speak of the radical atom. Chlorine as a free radical, Cl⋅ , is the chlorine atom that we say has 7 valence electrons and wants its 8th to form an octet. So, Cl⋅ , chlorine radical, is less stable, and Cl− , chlorine ion, is more stable
Answer is: concentratio of H₃O⁺ ions is 4.2·10⁻³ M.<span>
Chemical reaction: HCOOH(aq) + H</span>₂O(l) ⇄ HCOO⁻(aq) + H₃O⁺(aq).<span>
c(HCOOH) = 0,1 M.
[</span>H₃O⁺] = [HCOO⁻] = x.<span>
[HCOOH] = 0,1 M - x.
</span>Ka = [H₃O⁺] · [HCOO⁻] / [HCOOH].
0,00018 = x² / (0,1 M - x).<span>
Solve quadratic equation: x = </span>[H₃O⁺] = 0,0042 M.
Answer:
n₂ = 2.55 mol
Explanation:
Given data:
Initial number of moles = 0.758 mol
Initial volume = 80.6 L
Final volume = 270.9 L
Final number of moles = ?
Solution:
Formula:
V₁/n₁ = V₂/n₂
V₁ = Initial volume
n₁ = initial number of moles
V₂ = Final volume
n₂ = Final number of moles
now we will put the values in formula.
V₁/n₁ = V₂/n₂
80.6 L / 0.758 mol = 270.9 L/ n₂
n₂ = 270.9 L× 0.758 mol / 80.6 L
n₂ = 205.34 L.mol /80.6 L
n₂ = 2.55 mol
Answer:
b. 0,99atm
c. Answer is in the explanation
d. Answer is in the explanation
Explanation:
b. Using Gay-Lussac's law:
P₁T₂ = P₂T₁
P₁: 0,70 atm; T₂: 425K; P₂: ??; T₁: 299K
0,70atm×425K / 299K = <em>0,99 atm</em>
c. Using kinetic molecular theory, the increasing of temperature increases the kinetic energy of gas particles and if kinetic energy increases, the pressure increases. That means the increasing of temperature increases the pressure in the system.
d. Now, the increases in kinetic energy of gases increase the collisions betwen particles. As these intermolecular forces that are not taken into account in ideal gas law, the observed pressure will be different to the pressure predicted by ideal gas law.
I hope it helps!