Answer:
(1) Bromination, (2) E2 elimination and (3) epoxidation
Explanation:
- In the first step, -OH group in cyclopentanol is replaced by more facile leaving group Br by treating cyclopentanol with

- In the second step, E2 elimination in presence of strong base e.g. NaOEt/EtOH produce cyclopentene
- In the third step, treatment of cyclopentene with mCPBA produces 1,2-epoxycyclopentane
- Full reaction scheme has been shown below
Small crystals
<span>white, brown </span>
<span>hard as in solid at room temp </span>
<span>sweet </span>
Answer:
Follows this order: B=> A => C.
Explanation:
NB: kindly check the attachment for the diagram of compounds A, B and C.
Elution is a very important concept in chromatography separation techniques. It deals with the use of eluent in the removal of an adsobate from an adsorbent. The principle behind Elution is just about how polar the solvent is.
So, in this question Compound B will go with the Elution first because of its polarity. Compound B has lesser polarity as compared to Compounds A and B.
Compound A will then elutes second because of its polarity too as resonance increases its polarity.
Last, compound C elutes because it has the highest polarity which is caused by electronegative atoms.
Answer:
-6.4x10⁻¹⁹ C
Explanation:
The elementary charge of one electron is -1.60x10⁻¹⁹C, so each electron has its charge, and a sample with more than one electrons will have a multiple of its charge, which is proportional to the number of electrons. So, if the oil droplet had 4 electrons, thus the charge will be four times the elementary charge:
4*(-1.60x10⁻¹⁹) C = -6.4x10⁻¹⁹ C
Answer:
Choice C - a mixture
Explanation: I just did the question