Answer- the estimated number is 4 moles but it actually is 3.86 moles
Explanation
hi i hope your days been amazing and know that your loved⋆ ˚。⋆୨୧˚ ˚୨୧⋆。˚ ⋆
<33
There are 4 moles of spectator ions that remain in solution.
The equation of the reaction is;
Na2CO3(aq) + Pb(NO3)2(aq) -------> PbCO3(s) + 2NaNO3(aq)
We have to determine the limiting reactant. This is the reactant that yields the least amount of product. Note that the spectator ions are Na^+ and NO3^- that form NaNO3.
For Na2CO3
1 mole of Na2CO3 yields 2 moles of NaNO3
3 moles of Na2CO3 yields 3 × 2/1 = 6 moles of NaNO3
For Pb(NO3)2
1 mole of Pb(NO3)2 yields 2 moles of NaNO3
2 moles of Pb(NO3)2 yields 2 × 2/1 = 4 moles of NaNO3
We can see that Pb(NO3)2 is the limiting reactant.
Since [NaNO3] = [Na^+] = [NO3^-], it follows that there are 4 moles of spectator ions that remain in solution.
Learn more: brainly.com/question/22885959
Answer:
Explanation:
We can only talk about resonance hybrid for a compound in which more than one structure is possible based on its observed chemical properties.
There are compounds whose chemical properties can not be satisfactorily explained on the basis of a single chemical structure. In the case of such compounds, we invoke the idea of resonance.
A resonance hybrid is a single structure drawn to represent a given chemical specie which exhibits resonance behaviour and can otherwise be represented on paper in the form of an average of two or more chemical structures separated each from the next by a double-headed arrow.
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g