Answer and Explanation:
The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by 
The back emf of the DC motor is given by
Here N is speed of the motor ,P signifies the number of poles ,Z signifies the the total number of conductor and A is number of parallel paths
As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor
What is the question? It looks like a statement...
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
Answer:
b
Explanation:
i think do kill me if im wrong
Answer:

Explanation:
Cold water in: 
Hot water in: 

Step 1: Determine the rate of heat transfer in the heat exchanger




Step 2: Determine outlet temperature of hot water



Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)










Step 4: Determine required surface area of heat exchanger



Step 5: Determine length of heat exchanger


