Answer:
Explanation:
The centripetal acceleration requirement must equal gravity at the top of the circle
mg = mv²/R
v = √Rg
v = √(1.0(9.8))
v = 3.1304951...
v = 3.1 m/s
Answer:
the speed of the ball is 10 m/s
Explanation:
Given;
magnitude of exerted force, F = 400 N
mass of the ball, m = 2 kg
radius of the circle, r = 0.5
The speed of the ball is calculated by applying centripetal force formula;

Therefore, the speed of the ball is 10 m/s
I am pretty sure that the only statement which is true for particles of the medium of an earthquake P-wave is being shown in the option : b)vibrate parallel to the wave, forming compressions and rarefactions. As you know, it can be formed in two ways : from alternating compressions and rarefactions or primary wave. I bet you will agree with me.
The answer is C 8.87*10^4 m/s (it shouldn't be m/s^2 though as velocity is in m/s)
Since you know the acceleration is 12 m/s^2, the initial velocity is 2.39*10^4 m/s and the time (you have to convert to seconds) is 5400 seconds, then you can use the equation
v = vo + at
When you plug in the values you get
v = 2.39*10^4 + 5400*12 . so v = 8.87*10^4 m/s. C is your answer.
Answer:
since small stone has less mass so the gravitational pull of the earth is lesser in case of this but this is not for the bigger stone as the gravitational pull of the earth is greater...
PLEASE MARK BRAINLIEST!!!!!