Answer:
b)
Explanation:
If the charge is released at rest in an electric field, it will move along the electric field, going to regions of higher electric potential if it is a negative charge (against the field direction) and towards lower potential regions if it is positive (along the field). This means that the charge will gain kinetic energy, energy that only can come from a decrease in the electric potential energy.
For a positive charge: ΔEp = q*ΔV < 0 (as ΔV < 0)
For a negative charge: ΔEp = (-q) *ΔV < 0 (as ΔV > 0)
the emission of electrons or other free carriers when light shines on a material.
Answer:
The velocity of a falling object
Explanation:
The positive X axis is towards right and positive Y axis is towards up, so North direction is positive
A vector with less than 1 magnitude is not negative, because its magnitude may be in between 0 and 1 which is positive vector.
Any vector whose magnitude is greater than 1 is never be a negative vector.
The velocity of a falling object is towards bottom, that is towards negative Y axis. So that vector is negative.
Answer: W = 11340J
Explanation:
Hey there! I will give the following steps, if you have any questions feel free to ask me in the comments below.
So this is the Formula: Power = Work / Time.
<u>Step 1:</u><em><u> Find the Formula</u></em>
P = W / T
<em><u>
</u></em>
<u>Step 2: </u><u><em>Make W the subject of the equation.</em></u>
W = PT
<u>Step 3:</u><u> </u><u><em>Given.</em></u>
P = 270 Watts, T = 42 seconds
<u>Step 4:</u><u><em> Substitute these values into equation 2
.</em></u>
W = 270(42)
<u>Step 5:</u><u> </u><u><em>Simplify.</em></u>
W = 11340J
The amount of work done was 11340.
~I hope I helped you! :)~
Answer:
The number density of the gas in container A is twice the number density of the gas in container B.
Explanation:
Here we have
P·V =n·R·T
n = P·V/(RT)
Therefore since V₁ = V₂ and T₁ = T₂
n₁ = P₁V₁/(RT₁)
n₂ = P₂V₂/(RT₂)
P₁ = 4 atm
P₂ = 2 atm
n₁ = 4V₁/(RT₁)
n₂ =2·V₁/(RT₁)
∴ n₁ = 2 × n₂
Therefore, the number of moles in container A is two times that in container B and the number density of the gas in container A is two times the number density in container B.
This can be shown based on the fact that the pressure of the container is due to the collision of the gas molecules on the walls of the container, with a kinetic energy that is dependent on temperature and mass, and since the temperature is constant, then the mass of container B is twice that of A and therefore, the number density of container A is twice that of B.