The volume of 0.160 m Li2S solution required to completely react with 130 ml of 0.160 CO(NO3)2 is calculated as below
write the reacting equation
Co(NO3)2 + Li2S = 2LiNO3 + COS
find the moles of CO(NO3)2 = molarity x volume
= 130 ml x 0.160=20.8 moles
since the reacting moles between CO(NO3)2 to LiS is 1:1 the moles of LiS is also 20.8 moles
volume of Lis is therefore = moles of Lis/ molarity of LiS
= 20.8/0.160 = 130 Ml
Answer:
see notes below
Explanation:
The mole is the mass of substance containing 1 Avogadro's Number of particles. That is, 1 mole substance = 1 formula weight. For elements, 1 mole weight is equal to the atomic weight expressed as grams. For molecules, 1 mole weight is equal to the molecular weight expressed as grams.
1 mole = 1 formula weight
<u>Moles to Grams and Grams to Moles</u>
Grams => Moles
Given grams, moles = mass given / formula weight
*Ask the question => How many formula weights are there in the given mass? => Results is always moles.
Moles => Grams
Given moles, grams = moles given X formula weight
*Summary
Grams to Moles => divide by formula weight
Moles to Grams => multiply by formula weight
C I think is the right answer
Explanation:
your answer is Kelvin because it is the SI unit of temperature
Answer:
Elements that fall between those on the left and right sides of the periodic table
Explanation:
Transition metals:
These are present at the center of periodic table.
These are d-block elements.
They include the elements of group 3 to 12 in periodic table.
They have large charge to radius ratio.
They mostly form paramagnetic compounds.
They shoes more than one oxidation state.
They form colored compounds.
They all have high melting and boiling point.
They have high densities.
They form stable complexes.
The elements of f-block are also transition but they are called inner transition.These are consist of two series lanthanide and actinides.