What is likely to occur if sulfur forms an ionic bond with another element is <u>sulfur will accept electrons</u>
<u><em> explanation</em></u>
- Ionic bond is formed when a metal react with a non metal.
- Metal loses ( donate) electrons to form cation ( a positively charged ion) , while non metal accept (gain) electrons to form anion ( a negatively charged ion ).
- Sulfur is a non metal therefore it accept electrons if it form an ionic bond with a metal. sulfur accept 2 electrons to form S2- ion
Answer:
Explanation: C is the answer
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)
Each mole of substance contains 6.02 x <span>1023</span> component parts, in this case water molecules.
If you have 2.3 moles of water you will have 2.3 x 6.02 x <span>1023</span> which is 1.3846 x <span>1024</span> molecules.
Each molecule contains 2 hydrogen atoms, so the total number of hydrogen atoms in 2.3 moles of water will be 2 x 1.3846 x <span>1024</span> = 2.7692 x <span>1024</span>.
Please mark brainliest, thanks :)
Answer:
- Elimination
- Elimination
- Zaitsev
- Zaitsev
- Carbocation
Explanation:
- The mechanism is generally accepted to always operate via an ELIMINATION step-wise process.
- The ELIMINATION mechanism process will always produce (after dehydration) a ZAITSEV style alkene as major product
- The driving force for the production of this ZAITSEV style alkene product is generally going to be determined by stability of the CARBOCATION
Elimination mechanism is the removal of two substituents from a molecule in either a one- or two-step mechanism
Carbocation is a molecule containing a positive charged carbon atom and three bonds