Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.
<span>The correct answer is that an ionic bond forms between charged particles. To form this bond, the particles transfer valence electrons (those in the outermost orbit). Specifically, in ionic bonding, the metal atom loses its electrons (thus becoming positive) and the nonmetal atom gains electrons (thus becoming negative).</span>
Answer:
The sphere on the left has the most inertia because it has more mass.
Explanation:
Inertia is a property of matter of a substance.
According to Newton's first law of motion, a body continues to stay in the state of rest or constant velocity unless acted upon a external force.
The amount of inertia that an object possess is proportional to the mass of the object.
The sphere on the left is of 300 kg and that on the right is of 30 kg.
Clearly, the sphere on the left has more mass.
Therefore, the sphere on the left has the most inertia.
Answer: The molarity of the borax solution is 0.107 M
Explanation:
The neutralization reaction is:

According to neutralization law:

where,
= basicity of
= 2
= acidity of borax = 2
= concentration of
= 1.03 M
= concentration of borax =?
= volume of
= 2.07ml
= volume of borax = 20.0 ml
Now put all the given values in the above law, we get the molarity of borax:

By solving the terms, we get :

Thus the molarity of the borax solution is 0.107 M