Answer:
<em>v=14 m/s</em>
Explanation:
<u>Mechanical Energy
</u>
The kinetic energy of a body (K) is the capacity of doing work due to its speed. It can be expressed as

The potential energy (U) is the capacity of doing work due to its height respect to a certain reference level.

The mechanical energy is the sum of both

The principle of conservation of mechanical energy states it must remain the same if no external force is acting on it. The diver drops from the diving board, which means its initial speed is zero (and so its initial kinetic energy). Thus, the mechanical energy at the jumping time is

When the diver is about to get into the water, his height reaches zero and the speed is at maximum. All the potential energy became kinetic energy, so

Rearranging


The final speed of the diver is

Gravity affects weight, it does not affect mass. Masses always remain the same. Newton's Second Law of Motion: Force = mass x acceleration The acceleration of an object is: a) directly proportional to the net force acting on the object. ... c) inversely proportional to the mass of the object.
False. When a chemical reaction occurs, atoms don't create or destroy. They are rearranged as bonds and are broken and formed together.
Answer:
B. A system cannot take in additional matter.
Explanation: The total amount of energy in the universe remains constant, it can merely change from one form to another.
Hope it helps you:)))
have a good day
Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.