1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
2 years ago
11

calculate the percentage increase in speed of the cyclist when the power output changes from 200W to 300W

Physics
1 answer:
Likurg_2 [28]2 years ago
4 0

Answer:

50%

Explanation:

That would be the amount

You might be interested in
Which of the following hypotheses is both falsifiable and testable?
rosijanka [135]
B. If all plants are watered at least once a day then they will all grow at least 1 cm a day.

All plants grow at different rates.

Hope this helps! XD
5 0
3 years ago
Read 2 more answers
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at
GaryK [48]

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

5 0
2 years ago
light travels approximately 982,080,000 ft/s, and one year has approximately 32,000,000 seconds. A light year is the distance li
lapo4ka [179]

Answer:

The distance traveled in 1 year is: 3.143*10^{16}ft

Explanation:

Given

s = 982,080,000 ft/s --- speed

t = 32,000,000 s --- time

Required

The distance traveled

This is calculated as:

Speed = \frac{Distance}{Time}

So, we have:

Distance = Speed * Time

This gives:

Distance = 982,080,000 ft/s * 32,000,000 s

Distance = 982,080,000  * 32,000,000ft

Distance = 3.143*10^{16}ft -- approximated

5 0
2 years ago
Argon gas enters steadily an adiabatic turbine at 900 kPa and 450C with a velocity of 80 m/s and leaves at 150 kPa with a veloc
Crazy boy [7]

Answer:

Temperature at the exit = 267.3 C

Explanation:

For the steady energy flow through a control volume, the power output is given as

W_{out}= -m_{f}(h_{2}-h_{1} + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

Inlet area of the turbine = 60cm^{2}= 0.006m^{2}

To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.

Assuming Argon behaves as an Ideal gas, we have the specific volume v_{1}

as

v_{1}=\frac{RT_{1}}{P_{1}}=\frac{0.2081\times723}{900}=0.1672m^{3}/kg

m_{f}=\frac{1}{v_{1}}\times A_{1}V_{1} = \frac{1}{0.1672}\times(0.006)(80)=2.871kg/sec

for Ideal gasses, the enthalpy change can be calculated using the formula

h_{2}-h_{1}=C_{p}(T_{2}-T_{1})

hence we have

W_{out}= -m_{f}((C_{p}(T_{2}-T_{1}) + \frac{v_{2}^{2}}{2} - \frac{v_{1}^{2}}{2})

250= -2.871((0.5203(T_{2}-450) + \frac{150^{2}}{2\times 1000} - \frac{80^{2}}{2\times 1000})

<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>

evaluating the above equation, we have T_{2}=267.3C

Hence, the temperature at the exit = 267.3 C

5 0
3 years ago
Two charges, Q1 and Q2, are separated by 6·cm. The repulsive force between them is 25·N. In each case below, find the force betw
Misha Larkins [42]

Answer:

a) 5 N b) 225 N c) 5 N

Explanation:

a) Per Coulomb's Law the repulsive force between 2 equal sign charges, is directly proportional to the product of the charges, and inversely proportional to the square of  the distance between them, acting along  the  line that joins the charges, as follows:

F₁₂ = K Q₁ Q₂ / r₁₂²

So, if we make Q1 = Q1/5, the net effect will be to reduce the force in the same factor, i.e. F₁₂ = 25 N / 5 = 5 N

b) If we reduce the distance, from r, to r/3, as the  factor is squared, the net effect will be to increase the force in a factor equal to 3² = 9.

So, we will have F₁₂ = 9. 25 N = 225 N

c) If we make Q2 = 5Q2, the force would be increased 5 times, but if at the same , we increase the distance 5 times, as the factor is squared, the net factor will be 5/25 = 1/5, so we will have:

F₁₂ = 25 N .1/5 = 5 N

3 0
3 years ago
Other questions:
  • A 0.45 kg soccer ball changes its velocity by 20.0 m/s due to a force applied to it in 0.10 seconds. What force was necessary fo
    9·2 answers
  • An inductor and a resistor are connected in series. When connected to a 60-Hz, 90-V (rms) source, the voltage drop across the re
    14·1 answer
  • What does this picture show?
    13·1 answer
  • TRUE OR FALSE<br> Culture creates the context for behavior in society.
    12·2 answers
  • 5. Find the mass of a car that is traveling at a velocity of 35 m/s West.
    15·1 answer
  • (AKS 3al) Which graph best represents a moving object in a state of equilibrium
    9·1 answer
  • I WILL GIVE BRAINLIEST!!!
    7·1 answer
  • A 3900 kg truck is moving at 6.0 m/s what is the kinetic energy
    8·2 answers
  • Two force of 20N and 40N act at a
    12·1 answer
  • Cindy runs 2 kilometers every morning. She takes 2 minutes for the first 250 meters, 4 minutes for the next 1,000 meters, 1 minu
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!