Answer:
B
Explanation:
it uses the process of the light reaction stage and Calvin cycle to trap sunlight in the day and make food at night
Answer:
https://youtu.be/3zmeVamEsWI
Explanation:
It is defined as the ratio of moles of one substance to the moles of another substance in a balanced equation. ... Mole ratios are the central step in performing stoichiometry because they allow us to convert moles of one substance to moles of another substance.
<span>The high-energy electron travels down an electron transport chain, losing energy as it goes.
Some of the released energy drives pumping of </span><span><span>\text H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the stroma into the thylakoid interior, building a gradient.
</span><span><span>H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the splitting of water also add to the gradient.
</span><span><span> H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as </span>chemiosmosis<span>.</span>
Answer:
0.1988 J/g°C
Explanation:
-Qmetal = Qwater
Q = mc∆T
Where;
Q = amount of heat
m = mass of substance
c = specific heat of substance
∆T = change in temperature
Hence;
-{mc∆T} of metal = {mc∆T} of water
From the information provided in this question, For water; m= 22.0g, ∆T = (24°C-19°C), c = 4.18J/g°C.
For metal; m= 34.0g, ∆T = (24°C-92°C), c = ?
Note that, the final temperature of water and the metal = 24°C
-{34 × c × (24°C-92°C)} = 22 × 4.18 × (24°C-19°C)
-{34 × c × (-68°C)} = 459.8
-{34 × c × -68} = 459.8
-{-2312c} = 459.8
+2312c = 459.8
c = 459.8/2312
c = 0.1988
The specific heat capacity of the metal is 0.1988 J/g°C