Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Answer:
If you change the number of neutrons somehow, nothing will happen because it carry's no charge at all.
Explanation:
The answer will be a or d im not really sure but the two of them will work
Answer:
A
Explanation:
Molecules of a gas are relatively more compressible than those of liquids and solids because they are relatively far apart without any intermolecular forces between them. However, at lower temperature and higher pressure, there is now a significant intermolecular interaction between the gas molecules and they are no longer relatively far apart. Hence they are more compressible than liquids and solids which already possess significant intermolecular interaction and thus a definite volume.
Molar mass H₂SO₄ = 98.079 g/mol
1 mol -------- 98.079 g
? mole ------ 0.0960 g
moles = 0.0960 * 1 / 98.079
= 0.0960 / 98.079
= 9.788 x 10⁻⁴ moles
hope this helps!