Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.
False. They don't borrow electrons at all. They already have their respective electron affinities. This is called as electronegativity, and it's an occurence where it already has its own from its actual structure. It never borrows any electrons at all.
Answer:
<u>The half-reaction that occurs on the anode of an electrolytic cell is called oxidation.
</u>
This can easily be depicted by a chemical reaction as such <u>"Zn(s) = Zn2+ (aq) + (2e-)"
</u>
While, the Zinc in this reaction loses two elections. Hence copper gains those electrons and becomes solid.
<em>These reactions occurring on the anode are called positive reactions.
</em>
While the reaction that occurs on the cathode is called reduction. This reaction can be represented by this equation "<u>Cu2+ (aq) + 2e- = Cu(s)</u>".
<u>These non-spontaneous reactions occurring in an electrolytic cell together are called redox reactions. These generate electrical energy.</u>