Answer: 1.0 × 10-14
Explanation:
Pure water, represented as
H2O --> [H+] + [OH -]
undergoes a reversible reaction in which both H+ and OH- are generated.
The equilibrium constant for this reaction, called the water dissociation constant, Kw, is 1.0 × 10-14 at 25 °C.
The correct option is D.
When dissolving a substance in a solvent, stirring the solution will increased the rate at which the substance dissolved. This is because, when one stirs a solution, it exposes more surface area of the solute to the solvent, thus, increasing the interaction between the solute and the solvent. The higher the quantity of the solute that is exposed to the solvent, the higher the rate of dissolution of the solute.
Answer:
0.14 moles of Fe₂O₃
Explanation:
Given parameters:
Number of moles of Fe = 0.27moles
Unknown:
Number of moles of Fe₂O₃ = ?
Solution:
To solve this problem, we are going to the work from the known specie to the unknown using their number of moles.
We first obtain the balanced equation of the reaction;
4Fe + 3O₂ → 2Fe₂O₃
The equation above is balanced;
4 moles of Fe produced 2 moles of Fe₂O₃
0.27 moles of Fe will produce
= 0.14 moles of Fe₂O₃
Try photo math it will probably be more helpful