Answer:

Explanation:
Given that,
Mass of the object, m = 100 grams
Volume of the object, V = 20 cm³
We need to find the density of the object. We know that, density is equal to mass per unit volume. So,

So, the density of the object is equal to
.
Answer:
Most interstellar clouds are much bigger than our solar system.
Explanation:
An interstellar cloud refers:
- It is generally an accumulation of gas, plasma, and dust in our and other galaxies.
- It is basically a denser-than-average region of the interstellar medium (ISM).
Interstellar clouds can be large up to 106 solar masses
It is also often said to be the most massive entities in the galaxy.
Hence
we can say about Interstellar clouds,
They are much bigger than our solar system.
learn more about interstellar clouds here:
<u>brainly.com/question/14726563</u>
<u />
#SPJ4
Answer:
The greater the amplitude the greater the energy.
(Think of a water wave - which carries greater energy a 1 ft wave or
a 10 ft wave)
This question involves the concepts of density, volume, and mass.
The approximate diameter of a magnesium atom is "3.55 x 10⁻¹⁰ m".
<h3>STEP 1 (FINDING MASS OF INDIVIDUAL ATOM)</h3>
It is given that:
Mass of one mole = 24 grams
Mass of 6 x 10²³ atoms = 24 grams
Mass of 1 atom =
= 4 x 10⁻²³ grams
<h3>STEP 2 (FINDING VOLUME OF A SINGLE ATOM)</h3>

where,
= density = 1.7 grams/cm³- m = mass of single atom = 4 x 10⁻²³ grams
- V = volume of single atom = ?
Therefore,

V = 2.35 x 10⁻²³ cm³
<h3>STEP 3 (FINDING DIAMETER OF ATOM)</h3>
The atom is in a spherical shape. Hence, its Volume can be given as follows:
![V =\frac{\pi d^3}{6}\\\\d=\sqrt[3]{ \frac{6V}{\pi}}\\\\d=\sqrt[3]{ \frac{6(2.35\ x\ 10^{-23}\ cm^3)}{\pi}}](https://tex.z-dn.net/?f=V%20%3D%5Cfrac%7B%5Cpi%20d%5E3%7D%7B6%7D%5C%5C%5C%5Cd%3D%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6V%7D%7B%5Cpi%7D%7D%5C%5C%5C%5Cd%3D%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6%282.35%5C%20x%5C%2010%5E%7B-23%7D%5C%20cm%5E3%29%7D%7B%5Cpi%7D%7D)
d = 0.355 x 10⁻⁷ cm = 3.55 x 10⁻¹⁰ m
Learn more about density here:
brainly.com/question/952755
Answer:

Explanation:
given,
length of the ship = 120 m
length of model of the ship = 4 m
Speed at which the ship travels = 70 km/h
speed of model = ?
by using froude's law

for dynamic similarities




hence, the velocity of model will be 12.78 km/h