1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KIM [24]
3 years ago
11

I this right....????

Physics
2 answers:
Vladimir [108]3 years ago
7 0
Yes it is correct in my way I it’s correct
e-lub [12.9K]3 years ago
4 0

Answer:

yes

Explanation:

You might be interested in
Which of the following could be used to create an open circuit?
Arturiano [62]
A switch
What are the answers choices
4 0
3 years ago
Mercury, a planet in our Solar System, and Callisto, a moon of the planet Jupiter, are about the same size. However, Mercury’s m
TiliK225 [7]
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.
3 0
3 years ago
Read 2 more answers
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
Explain how the potential energy of two charged particles depends on the distance between the charged particles and on the magni
maks197457 [2]

Answer:

According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges

Explanation:

According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges.  Since the potential energy  of two charged particles is directly proportional to the product of the two charges, its magnitude increases as the charges of the particles increases. For like charges, the potential energy is positive(the product of the two alike charges must be positive) and since potential energy is inversely proportional to the distance between the charges therefore it decreases as the particles get farther apart . For opposite charges, the potential energy is negative(the product of the two opposite charges must be negative) and since potential energy is inversely proportional to the distance between the two charges, it becomes more negative as the particles get closer together.

8 0
3 years ago
Spaceship 1 and spaceship 2 have equal masses of 200 kg. Spaceship 1 has a speed of 0 m/s, and spaceship 2 has a speed of 10 m/s
m_a_m_a [10]

Answer:

2000 kg m/s

Explanation:

The momentum of an object is a vector quantity whose magnitude is given by

p=mv

where

m is the mass of the object

v is the velocity of the object

and its direction is the same as the velocity.

In this problem, we have:

- Spaceship 1 has

m = 200 kg (mass)

v = 0 m/s (zero velocity)

So its momentum is

p_1 =(200)(0)=0

- Spaceship 2 has

m = 200 kg (mass)

v = 10 m/s (velocity)

So its momentum is

p_2=(200)(10)=2000 kg m/s

Therefore, the combined momentum of the two spaceships is

p=p_1+p_2=0+2000=2000 kg m/s

3 0
3 years ago
Other questions:
  • When a substance has changed into something new or different so that the original substance is gone, as in digestion, radioactiv
    9·2 answers
  • A rod of mass M and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m, moving w
    10·1 answer
  • What is seismology??????
    7·2 answers
  • In what medium would light have the longest wavelength
    10·1 answer
  • The model of the universe that suggests that the sun is the center of the universe was first brought by
    5·2 answers
  • If the distance between two objects is increased,the gravitational attraction between them will.....?
    5·2 answers
  • When is thermal equilibrium achieved between two objects?
    11·2 answers
  • 3) A driver in a 1000-kg car traveling at 24 m/s slams on the brakes and skids to a stop. If the coefticient of friction between
    12·1 answer
  • The speed you read on a speedometer is ____.
    11·1 answer
  • What affects fuel consumption in automobiles?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!