In one quadrant there are 90 degrees.
Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

Therefore

Charge, Q is given by CV hence for the first capacitor charge will be 
Here, 
Answer:
a= 3.49 m/s^2
Explanation:
magnitude of total acceleration = sqrt{radial acceleration^2+tangential acceleration^2}.
we know that tangential acceleration a_t= change in velocity /time taken
now 90 km/h = 25 m/s
a_t = 25/17 = 1.47 m/s^2.
radial acceleration a_r = v^2/r
v= a_t×t = 1.47×13 = 19.11 m/s
a_r = 19.11^2/115= 3.175
now,


a= 3.49 m/s^2
Because the box keeps going straight at the same speed, while the seat under it speeds up, slows down, or changes direction.
Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle