Answer:
We are considering an Allene molecule here, CH2CCH2. To answer your question, NO, they don't have to lie on the same plane. The spatial arrangement between them is that the center carbon that forms these pi bind in the left and right are PERPENDICULAR to each other.
Explanation:
We see here that The terminal carbons are sp2 hybridized, and form three σ-bonds each which means that each terminal carbon has one unhybridized p-orbital. The central carbon atom is sp hybridized, and forms two σ-bonds which means it has two unhybridized p-orbitals. For better understanding, let's call these two orbitals px and py. Summarily, These orbitals are perpendicular to each other
Answer:
V₂ = 4.82 L
Explanation:
Given data:
Initial volume of gas = 3.5 L
Initial pressure = 115 Kpa
Final volume = ?
Final Pressure = 625 torr
Solution:
Final Pressure = 625 torr (625/760 =0.82 atm)
Initial pressure = 115 Kpa (115/101 = 1.13 atm)
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.13 atm × 3.5 L = 0.82 atm × V₂
V₂ = 3.955 atm. L/0.82 atm
V₂ = 4.82 L
Answer:
<span>Dipole-Dipole Forces are common </span><span>to all polar molecules but not non polar molecules.
Explanation:
An Asymmetrical molecule having a region of high electron density (partial negative) and lower density (partial positive) interacts with its neighbor molecules through Dipole-Dipole Interactions. The partial positive part of one molecule interacts with the partial negative part of another.
Example:
Acetone having a partial positive carbon (of carbonyl group) and partial negative oxygen interacts through Dipole-Dipole forces. Hence, acetone does not involves Hydrogen Bond interactions.</span>