1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
3 years ago
8

Satellites in near-earth orbit experience a very slight drag due to the extremely thin upper atmosphere. These satellites slowly

but surely spiral inward, where they finally burn up as they reach the thicker lower levels of the atmosphere. The radius decreases so slowly that you can consider the satellite to have a circular orbit at all times. As a satellite spirals inward, does it speed up, slow down, or maintain the same speed?
Physics
1 answer:
erica [24]3 years ago
6 0
According to my research, a satellite in a circular Earth orbit is subject to a very tiny constant friction force, due to the atmosphere. As it spirals inward, it slowly decreases its orbital radius.
So as long as a satellite moves in a circular orbit, it's velocity is inversely proportionate to the square root of the orbital radius-it speeds up as it spirals inward. I hope my answer proves of some help to you.
You might be interested in
Need help ASAPJenna made an electric circuit as seen in the picture. She placed a thermometer near her light bulb. After the lig
zepelin [54]
B) The temperature in the thermometer went up.
7 0
3 years ago
Read 2 more answers
A skydiver jumps out of a hovering helicopter. A few seconds later, another diver jumps out, so they both fall along the same ve
Sergio039 [100]

Answer:

distance difference would a) increase

speed difference would f) stay the same

Explanation:

Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.

Their equations of motion for distance and velocities are

s_2 = gt^2/2

s_1 = g(t + \Delta t)^2/2

v_2 = gt

v_1 = g(t + \Delta t)

Their difference in distance are therefore:

\Delta s = s_1 - s_2 = g(t + \Delta t)^2/2 - gt^2/2

\Delta s = g/2((t + \Delta t)^2 - t^2)

\Delta s = g/2(t + \Delta t - t)(t + \Delta t + t) (AsA^2 - B^2 = (A-B)(A+B)

\Delta s = g\Delta t/2(2t + \Delta t)

So as time progress t increases, Δs would also increases, their distance becomes wider with time.

Similarly for their velocity difference

\Delta v = v_1 - v_2 = g(t + \Delta t) - gt

\Delta v = gt + g\Delta t - gt = g\Delta t

Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.

This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.

8 0
3 years ago
Read 2 more answers
Joe and Max shake hands and say goodbye. Joe walks east 0.40 km to a coffee shop, and Max flags a cab and rides north 3.65 km to
katen-ka-za [31]

Answer:

3.67 km

Explanation:

Joe distance towards coffee shop is,

OB=0.40 km

And the Max distance towards bookstore is,

OA=3.65 km

Now the distance between the Joy and Max will be,

By applying pythagorus theorem,

AB=\sqrt{OB^{2}+OA^{2}}

Substitute 0.40 km for OB and 3.65 km for OA in the above equation.

AB=\sqrt{0.40^{2}+3.65^{2}}\\AB=\sqrt{13.4825} \\AB=3.67 km

Therefore the distance between there destination is 3.67 km.

6 0
3 years ago
Which statements describe properties of stars? Check all that apply.
Shtirlitz [24]
One, three and five are correct.

Although if the second statement is saying that stars use gravitational force to support nuclear fusion which in turn produces energy then that would be correct, but I don’t think so :)
7 0
2 years ago
Read 2 more answers
An airplane is flying through a thundercloud at a height of 2000 m (This is a very dangerous thing to do because of updrafts, tu
Doss [256]

Answer:

400000\ \text{N/C}

Explanation:

q_1 = Charge at 3000 m = 40 C

q_2 = Charge at 1000 m = -40 C

r_1 = 3000 m

r_2 = 1000 m

k = Coulomb constant = 9\times10^9\ \text{Nm}^2/\text{C}^2

Electric field due to the charge at 3000 m

E_1=\dfrac{k|q_1|}{r_1^2}\\\Rightarrow E_1=\dfrac{9\times 10^9\times 40}{3000^2}\\\Rightarrow E_1=40000\ \text{N/C}

Electric field due to the charge at 1000 m

E_2=\dfrac{k|q_2|}{r_2^2}\\\Rightarrow E_2=\dfrac{9\times 10^9\times 40}{1000^2}\\\Rightarrow E_2=360000\ \text{N/C}

Electric field at the aircraft is E_1+E_2=40000+360000=400000\ \text{N/C}.

7 0
3 years ago
Other questions:
  • You design toys for a toy company. Your boss wants you to hook up the lights in the toy car you are working on in the cheapest w
    9·2 answers
  • Give example of organisms that could NOT adapt/survive? (2004 Asian tsunami)
    8·1 answer
  • Sound will not travel through <br> A. A vacuum<br> B. Solids<br> C. Liquids <br> D. Gases
    5·1 answer
  • Kinetic and potential energies of a roller coaster I'm doing a portfolio
    12·1 answer
  • You are instructed to remove the appendicular skeleton of a cadaver. To accomplish this goal, you would
    9·1 answer
  • A 76-kg ball is tied to one end of a massless string of length 1.3 m. The other end of the string is tied to a nail in the cente
    15·2 answers
  • a car accelerates uniformly from rest to a speed of 65 km/h (18 m/s) in 12s. Find the distance the car travels during this time?
    8·1 answer
  • What color would the sky be if the atmosphere was 100% large molecules and particles like dust and water?
    5·1 answer
  • A 79 kg person sits on a 3.7 kg chair. Each leg of the chair makes contact with the floor in a circle that is 1.3 cm in diameter
    8·1 answer
  • The distance of the force from the axis of rotation is called?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!