Answer:
Modulus of resilience will be 
Explanation:
We have given yield strength 
Elastic modulus E = 104 GPa
We have to find the modulus
Modulus of resilience is given by
Modulus of resilience
, here
is yield strength and E is elastic modulus
Modulus of resilience
Answer:
The answer is
C. Split phase motor
Explanation:
Clamp meters rely on the principle of magnetic induction to make non contact AC current measurements. Electric current flowing through a wire produces a magnetic field.
Which is similar to basic mode of operation of electric motor and split phase motor is a type of electric motor.
What is a a clamp on meter?
Clamp meters are electrical testers which have wide jaws that are able to clamp around an electrical conductor. Originally designed as a single purpose tool for measuring AC current, clamp meters now include inputs for accepting test leads and other probes that support a wide range of electrical measurements, the jaws of a clamp meter permit work in tight spaces and permits current measurements on live conductors without circuit interruption.
Answer:
The cult of personality that surrounded Joseph Stalin in the Soviet Union led soviet citizens to believe that there was undisputed support for Stalin both among the government and the common people. In turn, this fueled self-censorship and made political change harder. This cult of personality was achieved through propaganda and censorship, as the Communist Party had control of all mass media. This desire to make himself a "god-like" figure was also an attempt to increase acceptance of communism among the people and to boost morale.
Explanation:
Answer:
Eutectic product in Fe-C system is called Ledeburite-C.
Answer:
V = 0.30787 m³/s
m = 2.6963 kg/s
v2 = 0.3705 m³/s
v2 = 6.017 m/s
Explanation:
given data
diameter = 28 cm
steadily =200 kPa
temperature = 20°C
velocity = 5 m/s
solution
we know mass flow rate is
m = ρ A v
floe rate V = Av
m = ρ V
flow rate = V =
V = Av = 
V = 
V = 0.30787 m³/s
and
mass flow rate of the refrigerant is
m = ρ A v
m = ρ V
m =
= 
m = 2.6963 kg/s
and
velocity and volume flow rate at exit
velocity = mass × v
v2 = 2.6963 × 0.13741 = 0.3705 m³/s
and
v2 = A2×v2
v2 = 
v2 = 
v2 = 6.017 m/s