Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
current going into a junction in a circuit is EQUAL TO the current comming out of the junction.
Explanation:
Krichhoff's Current Law
Kirchhoff's current law (1st Law) states that current flowing into a node (or a junction) must be equal to current flowing out of it.
is iron and aluminium is there
Answer:
boron
aluminum
gallium
indium
thallium
Explanation:
Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts:
Answer:
stone A is diamond.
Explanation:
given,
Volume of the two stone = 0.15 cm³
Mass of stone A = 0.52 g
Mass of stone B = 0.42 g
Density of the diamond = 3.5 g/cm³
So, to find which stone is gold we have to calculate the density of both the stone.
We know,


density of stone A


density of stone B.


Hence, the density of the stone A is the equal to Diamond then stone A is diamond.