the answer is waning Gibbous
The Waning Gibbous is an intermediary Moon phase. It starts right after the Full Moon, and it lasts until the Third Quarter.
Answer:
A) The event horizon, singularity, and the chute located between the two.
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
From what I see, it's saying that every minute, the ant can move 30 meters. So how many meter would it move in 45 minutes?
30 meters = 1 min
x meters = 45 min
1 min x 45 = 45 min
30 meters x 45 = 1,350 meters
So, I believe the answer would be 1,350 meters.
hope this helps. :>
The question involves a ping-pong ball that is held submerged in a bucket by a string attached to the bottom of the bucket.
The answer is the tension of the string will increase. This is because making the water salty increases its density, and consequently, increases its buoyancy. This is why sea water is more buoyant than fresh water. Therefore the ping pong is pushed more upwards by the water when salt is added than initially. This gives the string more tension.