I think the answer is Dust. Moons and stars definitely don't seem likely and dark particles, I am not even sure what those are. But I have seen rings on other planets before. Hope this helps. :)
Answer:
First, as you may know, the light travels at a given velocity.
In vaccum, this velocity is c = 3x10^8 m/s.
And we know that:
distance = velocity*time
Now, if some object (like a star ) is really far away, the light that comes from that star may take years to reach the Earth.
This means that the images that the astronomers see today, actually happened years and years ago (So the night sky is like a picture of the "past" of the universe)
Also, for example, if an astronomer sees some particular thing, he can apply a model (a "simplification" of some phenomena that is used to simplify it an explain it) and with the model, the scientist can infer the information of the given thing some time before it was seen.
Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
Ionic compounds is your answer. What happens is one atom donates electron(s) to the other atom, making one positive and the other negative. The opposite atoms attract, forming an ionic bond.
Hope this helps! :)
All ions are atoms with a charge