Answer:
W = 1884J
Explanation:
This question is incomplete. The original question was:
<em>Consider a motor that exerts a constant torque of 25.0 N.m to a horizontal platform whose moment of inertia is 50.0kg.m^2 . Assume that the platform is initially at rest and the torque is applied for 12.0rotations . Neglect friction.
</em>
<em>
How much work W does the motor do on the platform during this process? Enter your answer in joules to four significant figures.</em>
The amount of work done by the motor is given by:


Where I = 50kg.m^2 and ωo = rad/s. We need to calculate ωf.
By using kinematics:

But we don't have the acceleration yet. So, we have to calculate it by making a sum of torque:

=> 
Now we can calculate the final velocity:

Finally, we calculate the total work:

Since the question asked to "<em>Enter your answer in joules to four significant figures.</em>":
W = 1884J
Answer:
The combined magnetic force of the magnetized wire coil and iron bar makes an electromagnet very strong. In fact, electromagnets are the strongest magnets made. An electromagnet is stronger if there are more turns in the coil of wire or there is more current flowing through it.
Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:
He began organizing the known elements according to their atomic weights and chemical properties.
Explanation: