The work done by the elephant to lift one log is the force multiplied by the height at which the log has been lifted:

And so, the total work done to lift the 7 logs is 7 times the work done to lift each log:
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
213 s
Explanation:
Slope is the ratio of change in vertical distance to change in horizontal distance.
Slope = vertical height / horizontal height
Therefore:
6.4% = vertical height / 12.42
vertical height = 6.4% * 12.42
vertical height = 0.8 miles
The distance travelled by the car (s) is:
s² = 0.8² + 12.42²
s² = 154.9
s = 12.45 miles
Acceleration (a) = 2.93 ft/s^2 = 0.00055 mile/s²
initial velocity (u) = 0, final velocity = 203 mph
Using:
s = ut + 0.5at²
12.45 = 0.5(0.00055)t²
t =213 s
Answer:
3.6 x 10⁶ Pa
Explanation:
A = Area of the heel = 1.50 cm² = 1.50 x 10⁻⁴ m²
m = mass of the woman = 55.0 kg
g = acceleration due to gravity = 9.8 m/s²
Force of gravity on the heel is given as
F = mg
Inserting the values
F = (55) (9.8)
F = 539 N
Pressure exerted on the floor is given as


P = 3.6 x 10⁶ Pa
Acceleration(a) is the change in velocity(Δv) over the change in time(Δt). so just divide your velocity and time.