The density of the fluid is 776.3 
<u>Explanation:</u>
Buoyant force is the upward pushing force whenever an object is trying to get immersed in fluid. So this is the force given by the fluid on the object which is trying to get immersed. The buoyant force is found to be directly proportional to the product of density of the object, volume of the object. And here the acceleration due to gravity will be acting as proportionality constant.

As, buoyant force is given as 671 N and volume is 0.0882
and acceleration is known as 9.8 m/
. Then density is

Thus,

Density is 776.3 kg
.
Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
C = (1038 mi/h)(24 h/1 day)
C = 24,912 miles
From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice.
Answer
A thin atmosphere does not supply much oxygen, and the heat from the sun would evaporate it, because mercury is close to the sun.
Answer:
The focal length of the lens should be -51.5 cm (a concave lens).
Explanation:
The purpose of the lens is to make objects at 48.5 cm appear at the healthy near point. The healthy near point is 25.0 cm.
We use the lens formula

where <em>f</em> = focal length, <em>u</em> = object distance and <em>v</em> = image distance.
In this case, <em>u</em> = 48.5 cm and <em>v</em> = -25.0 cm.
<em>v</em> is negative because the image is virtual an not real. (Here, we are using the real-is-positive sign convention)


The negative sign indicates the lens is concave.