Answer is: boiling point will be changed by 4°C.
Chemical dissociation of aluminium nitrate in water: Al(NO₃)₃ → Al³⁺(aq) + 3NO⁻(aq).
Change in boiling point: ΔT =i · Kb · b.
Kb - molal boiling point elevation constant of water is 0.512°C/m, this the same for both solution.
b - molality, moles of solute per kilogram of solvent., this is also same for both solution, because ther is same amount of substance.
i - Van't Hoff factor.
Van't Hoff factor for sugar solution is 1, because sugar do not dissociate on ions.
Van't Hoff factor for aluminium nitrate solution is approximately 4, because it dissociates on four ions (one aluminium cation and three nitrate anions). So ΔT is four times bigger.
1.67377x10-27 kilogram(kg) or 1.67377x 10-24 gram(g)
Answer:
Therefore it will take 7.66 hours for 80% of the lead decay.
Explanation:
The differential equation for decay is


Integrating both sides
ln A= kt+c₁

[
]
The initial condition is A(0)= A₀,


.........(1)
Given that the
has half life of 3.3 hours.
For half life
putting this in equation (1)

[taking ln both sides,
]

⇒k= - 0.21
Now A₀= 1 gram, 80%=0.8
and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram
Now putting the value of k,A and A₀in the equation (1)




⇒ t≈7.66
Therefore it will take 7.66 hours for 80% of the lead decay.
It means that the fit and well adjusted ones thrive and "make it", and the weak ones that can't adapt die.