The loss of electron from an results in the formation of cation represented by the positive charge on the element whereas gaining of electron results in the formation of anion represented by the negative charge on the element.
The alkali earth metal beryllium (
) belongs to the second group of the periodic table. The ground state electronic configuration of
is:
From the electronic configuration it is clear that it has 2 valence electrons in its valence shell (
).
After losing all valence electrons that is 2 electrons from
orbital. The electronic configuration will be:

Since, lose of electron is represented by positive charge on the element symbol. So, the beryllium will have +2 charge on its symbol as
.
Hence, beryllium will have 2+ charge on it after losing all its valence electrons in the chemical reaction.
The answer is 67 108.0888km/s.
Based on Beer-Lambert's Law,
A = εcl ------(1)
where A = absorbance
ε = molar absorptivity
c = concentration
l = path length
Step 1: Calculate the concentration of the diluted Fe3+ standard
Use:
V1M1 = V2M2
M2 = V1M1/V2 = 10 ml*6.35*10⁻⁴M/55 ml = 1.154*10⁻⁴ M
Step 2 : Calculate the concentration of the sample solution
Based on equation (1) we have:
A(Fe3+) = ε(1.154*10⁻⁴)(1)
A(sample) = ε(C)(4.4)
It is given that the absorbances match under the given path length conditions, i.e.
ε(1.154*10⁻⁴)(1) = ε(C)(4.4)
C = 0.262*10⁻⁴ M
This is the concentration of Fe3+ in 100 ml of well water sample
Step 3: Calculate the concentration of Fe3+ in the original sample
Use V1M1 = V2M2
M1 = V2M2/V1 = 100 ml * 0.262*10⁻⁴ M/35 ml = 7.49*10⁻⁵M
Ans: Concentration of F3+ in the well water sample is 7.49*10⁻⁵M
Nucleic Acid is a complex organic substance present in living cells, especially DNA or RNA whose molecules consist of many nucleotides linked in a long chain.
Nucleotide is a compound consisting of a nucleoside linked to a phosphate group. They form the basic structural unit of nucleic acids such as DNA.
Answer:
m Br = 439.472 g
Explanation:
mass Br = ?
∴ mol Br = 5.50 mol
∴ molar mass Br 79.904 g/mol
mass = (mol)*(g/mol)
⇒ m Br = (5.50 mol)*(79.904 g/mol)
⇒ m Br = 439.472 g