<span>A particular frost-free refrigerator uses about 710kWh of electrical energy per year. You are to express this amount of energy in J, kJ, & Calories.
1 year (365 days / 1 year)(24 hours / 1 day)(3600s / 1h) = 31,536,000s
710 kWh/yr (1 yr) = 710 kWh
710 x 10^3 Wh = </span>710 x 10^3(J/s)(31,536,000s)<span> = 2.24 x 10^13 J
</span>2.24 x 10^13 J = 2.24 x 10^10 kJ = 5.35 x 10^12 cal
Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Kinetic energy because of the wood plank is just still and not moving it’s potential but since it’s asking which one it doesn’t have it doesn’t have kinetic energy cause it’s not moving
Answer:

Explanation:
The vertical component of the initial velocities are

If we ignore air resistance, and let g = -9.81 m/s2. The the time it takes for the projectiles to travel, vertically speaking, can be calculated in the following motion equation




So the ratio of the times of the flights is
