Answer:
19.28 g/cm^3 to the nearest hundredth.
Explanation:
The volume of water displaced = the volume of the metal.
density = mass / volume
0.0694 kg = 0.0694 * 1000
= 69.4 g.
Density = 69.4 / 3.6
= 19.28 g/cm^3.
Answer:
345.89 g/mol
Explanation:
To find the molar mass, find the atomic mass of all the elements from a periodic table.
Cs - 132.91 × 2 = 265.82
S - 32.07
O - 16.00 × 3 = 48.00
Now add them all together.
265.82 + 32.07 + 48.00 = 345.89 g/mol
Hope that helps.
Hi Sara
I would say it is an amorphous solid.
Because it's gradually loses shape.
I hope that's help:)
<span>First - you need the empirical formula.
So, assume you have 100 g of the compound.
If so, you'll have 54.53 gram of C, 9.15 g of H and 36.32 g of O. Find the number of moles of each.
54.53 g C (1 mole C / 12.01 g C) = 4.540
9.15 g H (1 mole H / 1.008 g H) = 9.077
36.32 g O (1 mole O / 15.9994 g O) = 2.270
Take the smallest number found and divide the others by it to get the empirical formula.
4.540/2.270 = 2.
9.077/2.270 = 4.
2.270/2.270 =1.
So, that gives you the empirical formula of C2H4O.
Find the weight of this compound. C = 12, H = 1, O = 16. So, C2H4O is 44 amu.
132/44 = 3.
So, 3 (C2 H4 O) = C6H12O3 = molecular formula.</span>