Answer:
Explanation:
You have an acid that is acidic or a base that is basic. When you mix the two, they form water (assuming those are bronsted-lowry acids and bases) which is neutral.
Colligative properties are those substances that depend
on the number of substances in the solution, not in the identity of that
substance. The property changes the way that it does when the amount of solute
is increased because it enables the solute to be scattered more. For example,
the freezing point of salt water is lower than that of the pure water due to
the salt ions present in water.
Answer:
Below.
Explanation:
1. Al2(SO4)^3 (aq) + 6LiOH aql) ----> 3Li2SO4 (aq) + 2Al(OH)^3 (s)
2. (NH4)2CO3 (aq) + MgCl2 (aq) ----> 2(NH4)Cl (aq) + MgCO3 (s).
It's a trigonal pyramidal, and this molecule is p<span>hosphorus trifluoride. YOU'RE WELCOME :D</span>
Answer : The rate constant at 525 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 
R = gas constant = 8.314 J/mole.K
= initial temperature = 701 K
= final temperature = 525 K
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{2.57M^{-1}s^{-1}})=\frac{1.5\times 10^5J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{701K}-\frac{1}{525K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B2.57M%5E%7B-1%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B1.5%5Ctimes%2010%5E5J%2Fmol%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B701K%7D-%5Cfrac%7B1%7D%7B525K%7D%5D)

Therefore, the rate constant at 525 K is, 