This solute-solvent interaction will release energy into the surroundings and makes the beaker warm.
<u>Explanation:</u>
The sulfuric acid is dissolved in water and it formed a solvation sphere of water molecules around the sulphur ions. So on stirring the beaker is getting warm. As the beaker is getting warm, this means the reaction occuring between sulfuric acid and water is exothermic reaction.
And so the energy is released into the surroundings. The energy released came from the breaking of bonds of sulfuric acid, as the acid is getting dissociated in water.
So, the release of energy in the surroundings lead to the warming of the beaker. Hence, the solute-solvent interaction release energy into the surroundings.
Answer:
...................................................
Answer:
A
Explanation:
It is correct please I hope it helps! :)
Answer:
110 degree
Explanation:
This is because Hybridization of an s orbital with all three p orbitals (px , py, and pz) results in four sp3 hybrid orbitals. sp3 hybrid orbitals are oriented at bond angle of 109.5 degrees from each other. This 109.5 degrees gives an arrangement of tetrahedral geometry
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.