Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Bases are iconic compounds that produce negative hydroxide ions (OH-) when dissolved in water. Bases taste bitter, feel slippery, and conduct electricity when dissolved in water.... Bases turn red litmus paper blue. The strength of bases is measured on the pH scale.
Answer:
The answer to your question is: letter A.
Explanation:
A Covalent bond polar is between 2 non metals where one atom is bigger than the other one so the distribution of charges creates this polarity.
A. One atom attracts shared electrons more strongly than the other atom This is the correct definition of bond polar, one element is bigger and stronger than the other element.
B. One atom has transferred its electrons completely to another atom This definition is incorrect, it is the definition of ionic bonding.
C. A sea of electrons has been created between the elements This definition is incorrect for the polar bond, it describes a metallic bonding.
D. Two atoms are sharing electrons with equal attraction This definition is incorrect for a polar bond, but is the correct definition for nonpolar bonding.
For example, consider the energy used by an electric fan. The amount of electrical energy used is greater than the kinetic energy of the moving fan blades. Because energy is always conserved, some of the electrical energy flowing into the fan's motor is obviously changed into unusable or unwanted forms.
Answer:
-Warm air sinks, creating an area of low pressure.
Explanation:
Heat will weigh more, than cool air!